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SUMMARY

A hybrid conservative finite difference/finite element scheme is proposed for the solution of the unsteady
incompressible Navier–Stokes equations. Using velocity–pressure variables on a non-staggered grid system, the
solution is obtained with a projection method based on the resolution of a pressure Poisson equation.

The new proposed scheme is derived from the finite element spatial discretization using the Galerkin method
with piecewise bilinear polynomial basis functions defined on quadrilateral elements. It is applied to the pressure
gradient term and to the non-linear convection term as in the so-called group finite element method. It ensures
strong coupling between spatial directions, inhibiting the development of oscillations during long-term
computations, as demonstrated by the validation studies.

Two- and three-dimensional unsteady separated flows with open boundaries have been simulated with the
proposed method using Cartesian uniform mesh grids. Several examples of calculations on the backward-facing
step configuration are reported and the results obtained are compared with those given by other methods.# 1997
by John Wiley & Sons, Ltd. Int. j. numer. methods fluids 24: 833–861, 1997.
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1. INTRODUCTION AND BACKGROUND

1.1. Artificial compressibility and pressure Poisson equation

The primitive variable velocity–pressure formulation has been widely adopted for computing the
incompressible Navier–Stokes equations and there are two common ways for the numerical
resolution of these equations: the artificial compressibility and pressure Poisson equation methods. In
both methods the time-dependent momentum equations are calculated using time-marching
techniques, while each method employs a different equation to compute the pressure.

Chorin1 modified the incompressible continuity equation by adding a time derivative term for the
pressure. Thus the flow becomes artificially compressible, since pressure waves of finite speed are
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introduced in the incompressible flow field. The resulting system of governing equations is
hyperbolic and can be solved by methods developed for compressible flow. This formulation is
generally well adapted when only steady solutions are sought.

Harlow and Welch2 proposed another approach to solve the incompressible Navier–Stokes
equations. In this approach the continuity constraint is replaced by a Poisson equation for the
pressure. The system of governing equations consists of the parabolic momentum equations and the
elliptic pressure Poisson equation, and boundary conditions are required for the pressure.

1.2. Staggered and non-staggered grids

One main difficulty of the primitive variable formulation is the satisfaction of the discrete
continuity equation. Harlow and Welch2 proposed the use of a staggered grid, while Chorin3

suggested the use of a non-staggered grid associated with a finite difference approach.
Staggered grids have some advantages over non-staggered grids, in particular in the prevention of

grid-scale oscillations2 and the satisfaction of the discrete continuity equation.4 However, when non-
uniform or=and non-orthogonal meshes are used, the task of discretizing the governing equations
becomes very complex and possible alternative approaches may be to use semi-staggered or non-
staggered grids.5

On a non-staggered grid in the artificial compressibility method an explicit fourth-order artificial
dissipation term is added to the discrete continuity equation in order to eliminate odd–even
decoupling modes in the pressure field due to the central second-order finite difference approximation
of the continuity equation. Therefore the discrete divergence of the velocity field is driven to a term
proportional to the fourth-order derivative of the pressure.

Similarly, the pressure Poisson method may not satisfy the discrete continuity equation exactly on
a non-staggered grid. This can be explained by analysing the method chosen to obtain the discrete
pressure equation, either directly from the continuous pressure equation or by taking the discrete
divergence of the discrete momentum equation. A careful examination of this problem has been
carried out by Sotiropoulos and Abdallah.6

Several other works concerning non-staggered grids have been reported in the literature.
Strikwerda,4 Rhies and Chow,7 Abdallah8,9 and Armfield5 have studied the main conditions required
for the success of methods based on non-staggered grids, among which integrability and regularity
properties appear to be two important constraints which should be satisfied by the discretization
procedure.

1.3. Boundary conditions

Another important problem is the choice of proper boundary conditions for the velocity and
pressure when using the pressure equation method. An extensive review of this problem may be
found in Reference 10.

For a solid boundary the velocity boundary condition is a no-slip condition; for the pressure,
standard projection methods lead to a homogeneous Neumann condition, while more sophisticated
methods use an inhomogenous Neumann condition. At an outflow boundary and in the absence of
body forces, prescribing zero normal and tangential stress components leads respectively to a
Dirichlet boundary condition on the pressure and to a Neumann boundary condition on the velocity
component tangential to the boundary. These boundary conditions are detailed in Section 2.

Finally, to initiate the computation, an initial field, verifying these boundary conditions has to be
computed in order to satisfy the divergence-free condition for the velocity.
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1.4. Overview of study

In this paper we present a new hybrid finite difference=finite element scheme for solving the
unsteady 3D Navier–Stokes equations in conservative form on a non-staggered grid using the
pressure Poisson equation (PPE) formulation.

Section 2 presents the basic equations and associated boundary conditions.
The proposed method, described in Section 3, is based on a conservative finite element scheme for

the divergence operator which allows one to eliminate the spurious oscillations induced by a standard
finite difference approximation of this operator. The scheme is modified at the near-boundary nodes
in order to retain this property.

The time integration is described in Section 4. Some properties of the new scheme are commented
upon and basic validation tests are detailed in Section 5.

The efficiency of the present method is demonstrated on the backward-facing step problem
(Section 6). Numerical results are compared with those given by other numerical methods and
experimental measurements. For Reynolds numberRe� 800 a steady solution is reached and the
results are in good agreement with those reported by Greshoet al.11 and Gartling.12

Finally, the feasibility of the method is demonstrated in the 3D case at low Reynolds number by
computing the transient flow through a square section ribbed channel (Section 7).

2. GOVERNING EQUATIONS

2.1. Basic equations

The non-dimensionalized Navier–Stokes equations for the unsteady three-dimensional flow of an
incompressible fluid in a bounded domain�V with boundary@V � G � GD � GN are expressed in
Cartesian co-ordinates~x � �x; y; z� as

~H � ~v � 0 in O; �1�

@~v

@t
�

~H � �~v
 ~v� � ÿ

~Hp �
1

Re
H

2
~v in O; �2�

where~v � �u; v; w�T is the velocity vector,p is the kinematic pressure (divided by the density) and
~v
 ~v is the tensor product of velocity vectors. These equations are subject to the boundary conditions
(without external body force)

~v � ~W on GD; �3�

ÿp �
1

Re

@vn

@~n
� 0 on GN; �4�

1
Re

@vt

@~n
� 0 on GN; �5�

where ~W is a prescribed velocity, and to the initial conditions

~v�~x; 0� � ~v0�~x� in �O; �6�

~H � ~v0 � 0 in O; �7�

where~n is the outward normal unit vector,vn � ~v � ~n andvt �

p

�~v � ~vÿ v
2
n�. The Reynolds number

Re � �VL=n is based on the characteristic velocity�V and lengthL.
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The first condition (4) on boundaryGN has been obtained by prescribing a zero normal stress
component. The second condition (5) is an approximation of the zero-tangential-stress condition

st �
1

Re

@vt

@~n
�

@vn

@~t

� �
� 0; �8�

where~t is the tangential unit vector. As the conventional form for the viscous term is employed
instead of the stress divergence form, this boundary condition is used for simplicity and is valid in the
absence of body force.

2.2. Pressure equation

The pressure equation is derived by applying the divergence operator to the momentum equations,
giving a Poisson-type second-order elliptic equation

ÿH
2p �

~H �

~H � �~v
 ~v� �

@

@t
~vÿ

1
Re
H

2
~v

� �
: �9�

By taking advantage of the fact that the divergence and Laplacian operators commute in the
continuum, the divergence of the viscous term can be omitted in equation (9). This procedure is
common to most existing methods based on the PPE formulation.13,14 In contrast, the consistent
pressure Poisson equation (CPPE) formulation (9)10 retains this term, which implies additional
discretization effort. In Section 5.3 we show that in the case of the proposed scheme this additional
effort is not necessary and the divergence of the viscous term may be omitted.

The pressure boundary conditions are of Neumann type onGD and of Dirichlet type onGN.
Applying the normal component of momentum on the boundaryGD and the zero-normal-stress
condition (4) onGN, we obtain

@p

@~n
� ~n �

1
Re
H

2
~vÿ

~H � �~v
 ~v� ÿ

@~v

@t

� �
on GD; �10�

p �

1
Re

@vn

@~n
on GN: �11�

2.3. Initialization procedure

For an ‘impulsive start’ problem such as the transient backward-facing step the initial velocity field is
not divergence-free. Following Gresho,13 a divergence-free initial velocity field~v0 may be obtained
by the following procedure. Let~u0 be an arbitrary velocity field which may be expressed as the sum
of a divergence-free field~v0 and a solenoidal fieldÿ~Hl:

~u0 � ~v0 ÿ
~Hl: �12�

The field~v0 verifies the incompressibility condition ifl is a solution of the equation

ÿH
2
l � ~H � ~u0; �13�

subject to the boundary conditions (BCs)

@l

@~n
� 0 on GD; �14�

l � 0 on GN: �15�

836 T. H. LÊ ET AL.
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However, in practice, this procedure does not always allow one to properly initiate the
computation, because the arbitrary initial field~u0 may not be regular enough. In order to avoid this
difficulty, we propose here a predictor step to generate a smooth field~u0 by solving the Laplacian
problem

H
2
~u0 � 0; �16�

with the same BCs (3) and (5) as for the primitive problem.

3. SPATIAL DISCRETIZATION

The assumed rectangular computational domain is discretized on a non-staggered uniform Cartesian
grid. Indices i; j; k �14 i4 Imax; 14 j4 Jmax; 14 k 4Kmax� are related to directionsx; y; z
respectively andui; j;k is the value of the variableu at the nodal point (i; j; k). An example is
given in Figure 4 of Dirichlet (GD) and Neumann (GN) boundaries (as defined in Section 2.1) for the
computation of the flow over a backward-facing step.

3.1. First-order derivatives

3.1.1. Oscillations induced by centred finite difference schemes.All first-order derivatives
appearing as contributions of the divergence operator of the convective term, of the pressure gradient
operator in the momentum equations or of the velocity divergence term in the Poisson equation must
be carefully approximated. The standard approximation is written here in the 2D case for dummy
variablesf andc as

@f

@x

� �

i;k

�

@c

@z

� �

i;k

� dxfi;k � dzci;k � O�Dx2
� � O�Dz2

�; �17�

wheredx �dz� is the standard central difference operator in directionx �z� and

dxfi;k � dzci;k �
1

2Dx
�fi�1;k ÿ fiÿ1;k� �

1
2Dx

�ci;k�1 ÿ ci;kÿ1�: �18�

Using this scheme (Figure 1(a)) may lead to oscillations due to the separation of�i � k�-odd and
�i � k�-even nodes (Figure 1(b)).

Figure 1. First-derivative standard scheme. (a) Divergence operator molecule. (b) Separation of odd–even nodes:D; i � k odd;
u, i � k even
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3.1.2. Proposed hybrid FEM=FDM centred scheme.Many other schemes derived from finite
volume or finite element approaches have been proposed which overcome this difficulty.15

In the present study we use an intrinsically multidimensional second-order centred scheme denoted
by d*

���

and defined in the 2D case as

dx*fi;k � dz*ci;k �
1

12Dx
��fi�1;k�1 ÿ fiÿ1;k�1� � 4�fi�1;k ÿ fiÿ1;k� � �fi�1;kÿ1 ÿ fiÿ1;kÿ1��

�

1
12Dz

��ci�1;k�1 ÿ ci�1;kÿ1� � 4�ci;k�1 ÿ ci;kÿ1� � �ciÿ1;k�1 ÿ ciÿ1;kÿ1��: �19�

This scheme is derived from the finite element spatial discretization using the Galerkin method via
the expansion of a dummy variable in the piecewise bilinear polynomial basis functions defined on
quadrilateral elements. The nodes of the elements are the same as the basic nodes of the finite
difference grid and the quadrature rule used is an exact integration formula.

The final stencil obtained for the discrete divergence operator is more complicated than the
standard one: it corresponds to an eight-point molecule in 2D, as shown in Figure 2, and a 26-point
molecule in 3D, while the standard scheme has a four-point molecule in 2D. It ensures strong
coupling between spatial directions, inhibiting the development of oscillations during long-term
computations, as demonstrated by the validation studies in Section 6.

In the 3D case the scheme is defined as

dx*fi; j;k �
1

72Dx
��fi�1; j�1;k�1 ÿ fiÿ1; j�1;k�1� � 4�fi�1; j;k�1 ÿ fiÿ1; j;k�1�

� �fi�1; jÿ1;k�1 ÿ fiÿ1; jÿ1;k�1� � 4�fi�1; j�1;k ÿ fiÿ1; j�1;k� � 16�fi�1; j;k ÿ fiÿ1; j;k�

� 4�fi�1; jÿ1;k ÿ fiÿ1; jÿ1;k� � �fi�1; j�1;kÿ1 ÿ fiÿ1; j�1;kÿ1� � 4�fi�1; j;kÿ1 ÿ fiÿ1; j;kÿ1�

� �fi�1; jÿ1;kÿ1 ÿ fiÿ1; jÿ1;kÿ1��: �20�

It corresponds to a 26-point molecule, while the standard scheme has a six-point molecule.
Although a standard FEM methodology has been adopted to compute the proposed scheme, the

present approach has two main differences compared with the conventional FEM. The first difference
is in the treatment of the discrete boundary conditions: they are not derived from the FEM, but from
FDM schemes. The second difference is the treatment of the non-linear convective termsu2 anduv:
the scheme is applied also to these terms as in the so-called group finite element method (GFEM),16

leading to simpler and less expensive computations. Owing to the basically FDM approximation
used, the mass matrix is a diagonal matrix and a lumping method is not employed.

Figure 2. First-derivative hybrid FEM=FDM scheme. Divergence operator molecule
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3.2. Second-order and mixed derivatives

The second-order derivatives of the Laplacian operator and the mixed derivatives occurring in the
momentum equations and pressure equation are discretized by centred, second-order-accurate
schemes which can be obtained by both FDM and FEM (using bilinear basis functions and
trapezoidal rule integration) approaches.

3.2.1. Second-order derivatives.In the 2D case we have

@
2f

@x2

� �

i;k

� dxxfi;k � O�Dx2
�; �21�

with

dxxfi;k �
1
Dx2

�fi�1;k ÿ 2fi;k � fiÿ1;k�: �22�

For the Laplacian operator the scheme is the standard five-point molecule (in contrast with the
nine-point one obtained with an exact integration when the FEM is used):

@
2f

@x2

� �

i;k

�

@
2f

@x2

� �

i;k

� dxxfi;k � dzzfi;k � O�Dx2
� � O�Dx2

�: �23�

3.2.2. Mixed derivatives.Similarly, for the mixed derivatives the scheme is obtained from a
combination of elementary schemes applied in both directionsx andz. It leads to the simplest centred
four-point formula involving the corners of the quadrilateral whose centroid is located at the current
point:

@
2
f

@x@z

� �

i;k

� dxzfi;k � O�DxDz�; �24�

with

dxzfi;k �
1

4DxDz
�fi�1;k�1 ÿ fiÿ1;k�1 ÿ fi�1;kÿ1 � fiÿ1;kÿ1�: �25�

Extensions of the previous schemes to the 3D case are straightforward.

3.3. Discrete boundary conditions

For any specific problem it is necessary to supply an appropriate set of initial and boundary
conditions. We shall be concerned particularly with a prescribed set of no-slip walls and with inflow
and outflow boundaries. The rigid walls may partially confine the fluid or they may define an obstacle
about which the fluid flows. Inflow boundaries have prescribed conditions of fluid influx through
them, while outflow boundaries are arranged in such a way that the fluid outflux through them will
occur with minimal disturbance to the fluid remaining in the computational domain.
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3.3.1. Velocity boundary conditions.The rigid wall boundary conditions are simple to derive.
They follow directly from the momentum equations. For a no-slip wall the tangential and normal
velocity components must vanish. Discrete corresponding boundary conditions on the pressure are
described hereafter.

Conditions along an inflow boundary are similarly derived. The only difference is that the velocity
components are prescribed in some arbitrary manner. Discrete pressure boundary conditions are
derived in such a way as to again insure consistency with the momentum balance.

An outflow boundary condition, in contrast, is very difficult to derive, because there is no unique
criterion which may help to its formulation. Following equation (5), the normal derivative of the
tangential velocity component is enforced to vanish. The normal velocity component is extrapolated
from the inner computational domain. These conditions are discretized as described below.

In order to approximate the normal derivatives appearing in (5) for the outflow condition on the
right-hand side of the computational domain (which is a vertical line or plane (i � Imax)), the
tangential componentwImax;k

is evaluated using an upwind second-order discretization, leading to

wImax;k
�

1
3 �4wimaxÿ1;k ÿ wImaxÿ2;k�; �26�

and the normal componentuImax;k
is calculated via the extrapolation formula

uImax;k
� 3uImaxÿ1;k ÿ 3uImaxÿ2;k � uImaxÿ3;k : �27�

This formula corresponds to prescribing the third-order derivative of the normal velocity
component equal to zero at the boundary and implicitly involves zero velocity divergence at this
boundary.

This procedure completely achieves the computation of the velocity field.

3.3.2. Pressure boundary conditions.As mentioned by Gresho and Sani,10 the proper choice of
pressure boundary conditions and their discrete equivalent counterpart is crucial in the success of a
numerical method. We use the continuous boundary conditions proposed by these authors: at an
inflow boundaryGD or at a rigid wall a Dirichlet boundary condition on velocity leads to a Neumann
condition on pressure, while at an outflow boundaryGN a Neumann condition on velocity leads to a
Dirichlet condition on pressure.

At an outflow boundary the derivation of the discrete boundary condition is straightforward, with a
Dirichlet condition (11) on pressure.

The Neumann pressure boundary condition is directly incorporated into the FDM scheme at
internal points adjacent to the boundaries. In the 2D case at nodes (2; k) the pressure equation is
discretized as

ÿ

@

@x

@p

@x

� �� �

2;k

ÿ

@
2p

@z2

� �

2;k

� �RHS�2;k; �28�

where RHS stands for the right-hand side of the Poisson equation (9).
The second term on the left-hand side is typically a second-order derivative and is discretized with

a standard scheme according to (21).
The first term on the left-hand side is a normal derivative which is approximated by a second-

order-accurate half-integer central difference scheme:

@

@x

@p

@x

� �

2;k

�

1
Dx

@p

@x

� �

5=2;k

ÿ

@p

@x

� �

3=2;k

" #
� O�Dx2

�: �29�
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The normal derivative in equation (28) ati � 5
2 is approximated by the central difference scheme

(18):

@p

@x

� �

5=2;k

� dxp5=2;k � O�Dx2
�; �30�

with

dxp5=2;k �
1
Dx

�p3;k ÿ p2;k� � d
�

x p2;k : �31�

The normal derivative ati � 3
2 is approximated by a first-order extrapolation procedure:

@p

@x

� �

3=2;k

�

@p

@x

� �

1;k

� O�Dx� � �BC�1;k � O�Dx�; �32�

where the term�@p=@x�1;k is evaluated by the pressure boundary condition (10) denoted by�BC�1;k .
Equation (27) is thus discretized by

ÿ

d
�

x

Dx
� dzz

� �
p2;k � �RHS�2;k ÿ

1
Dx

�BC�1;k : �33�

The global second-order spatial accuracy of the method even when using the first-order
extrapolation method is demonstrated by Gustafsson.17

4. TIME INTEGRATION

The velocity field is computed with the explicit first-order forward Euler scheme. Here a first-order
time-accurate method is employed to decouple the velocity and pressure and to enforce the
incompressibility constraint of the flow. Such a time scheme is a suitable candidate to run on modern
massively parallel machines, giving them a new interest. It should be noted that the obtention of an
actual second-order-accurate global temporal scheme and the derivation of the associated boundary
conditions are still open problems.18,19

4.1. Velocity

The velocity at timet � �n � 1�Dt is obtained via

~v
n�1

� ~v
n
ÿ Dt

�
D*pn

� D*�~v
 ~v�
n
ÿ

1
Re

L~v
n

�
; �34�

whereD* andL are discrete operators defined by

D* � �dx*; dz*�
T
; �35�

L � dxx � dzz: �36�

It may be noticed that as soon as the pressure is known at each node, then equation (34) is
immediately appropriate for the calculation of new velocities, a process accomplished by simple
algebraic substitutions.
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4.2. Pressure

The discrete equation is derived from equation (9), in which the term@�
~H � ~v�=@t is discretized by

�D* � ~vn�1
ÿ D* � ~vn

�=Dt. SettingD* � ~vn�1
� 0, in order to satisfy the discrete continuity equation,

one obtains

ÿ�dxx � dzz�p
n
i;k � dxx�u

2
�

n
i;k � dzz�w

2
i;k�

n
� 2dxz�uw�ni;k ÿ

1
Dt

�dx*un
i;k � dz*wn

i;k�

ÿ

1
Re

�dx�dxx � dzz�u
n
i;k � dz�dxx � dzz�w

n
i;k �: �37�

Since the continuity equation is not directly satisfied,D* � ~vn is retained here as a corrective term to
prevent the accumulation of numerical errors which lead to instabilities in the solution of the
momentum equations.2,8,9

A conjugate gradient Bi-CGSTAB algorithm20 is used to solve the linear system associated with
(37).

5. MAIN PROPERTIES OF SCHEME

For simplicity we suppose thatDx � Dz.

5.1. Accuracy and smoothing properties

The leading terms of the truncation error of the first-derivative operator for a scalar dummy
variablef defined by (19) are calculated by a Taylor series expansion. For the uniform grid case we
obtain for thex-derivative operator

�dx*f�ik �
@f

@x

� �

ik

�

Dx2

6
@

3f

@x3

� �

ik

�

Dx2

6
@

3f

@x@z2

� �

ik

� O�Dx4
�: �38�

A similar expansion in thez-direction leads to

�dz*f�ik �
@f

@z

� �

ik

�

Dx2

6
@

3f

@z3

� �

ik

�

Dx2

6
@

3f

@z@x2

� �

ik

�O �Dx4
�: �39�

It should be noticed that the truncation error of the discrete divergence operator has the particular
form

�D* � ~v�ik � �

~H � ~v�ik �
Dx2

6
H

2
�

~H � ~v�ik � O�Dx4
�: �40�

This result shows that for a locally divergence-free velocity field the termH
2
�

~H � ~v�ik is vanishing
and then the scheme is locally fourth-order-accurate.

Moreover, the discrete divergence operator (44) can be rewritten as

�D* � ~v�ik � 1 �
Dx2

6
H

2

� �
�

~H � ~v�ik : �41�

By inspection it can be seen that a non-divergence-free velocity will be smoothed by the operator
1 � �Dx2

=6�H2.
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5.2. Stability considerations

A pragmatic stability criterion may be obtained for the present method in the framework of linear
Fourier analysis.

Applying (34) to the scalar advection–diffusion equation

@f

@t
� ~v �

~Hf �

1
Re
H

2
f; �42�

where~v � �u; w�T, we obtain

f
n�1

� f
n
ÿ Dt uD* � wD* ÿ

1
Re

L

� �
f

n
; �43�

whereD* andL defined by (19) and (23) are applied, using a uniform mesh spacingDx.
As shown in the Appendix, the amplification factorG�i; k� of the present scheme for the mode

�i; k� �04 i; k 4N � is a function of theu-based cell Reynolds numberReu � uDx=n and CFL number
su � uDt=Dx. Figure 3 displays the stability diagram obtained, given by thejG�i; k�j4 1 condition,
in the su versusReu plane for different values of the parametersw=su � w=u.

Following this analysis, the scheme is submitted to rather restrictive stability constraints. For small
values ofsu andReu, stability is achieved. Maximal CFL numbers of order 0�5 are related to a cell
Reynolds number of order 2. Higher cell Reynolds numbers of order 10 may be used if the CFL
number is reduced to 0�1.

Figure 3. Stability diagram for hybrid scheme. CFL numbersu � uDt=Dx versus cell Reynolds numberReu � uDx=n.
Theoretical results: ————,w=u � 0; – – –, w=u � 0�25; - - - -, w=u � 0�5; . . . . , w=u � 0�75; -�-�-, w=u � 1

NAVIER–STOKES SOLVER FOR INCOMPRESSIBLE FLOW SIMULATION 843

# 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METHODS FLUIDS, VOL.24: 833–861 (1997)



5.3. Estimation of viscous term in proposed CPPE formulation

The problem of the choice of the PPE or CPPE formulation has been mentioned in Section 2.2.
While the continuous problem of the form of the transient heat equation for~H � ~v has already been
studied,10 the corresponding discrete problem has been poorly argued. It will be proved here in the
2D case that the use of the CPPE approach associated with our spatial scheme leads to the PPE
approach for the internal nodes.

In fact, using the discretized equation (37) and adding the viscous term discretized by a second-
order scheme, the CPPE equivalent differential equation should read (withDx � Dz)

ÿH
2p �

~H �

~H � �~v
 ~v� ÿ

~H � ~v

Dt
ÿ

1
6
Dx2

Dt
�

1
Re

� �
~H � H

2
~v� O Dx2

;

Dx4

Dt

� �
: �44�

Equation (44) exhibits competitions between the first term of the truncation error ofD* � ~vn
=Dt as

given by (40) and the viscous term appearing in the CPPE formulation. The interest of keeping the
viscous term in the pressure equation will depend on the balance between the two factorsDx2

=6Dt
and1=Re.

The time stepDt may be evaluated by using the two-dimensional stability criterion for the forward
Euler scheme given by Hindmarshet al.21 (see Appendix):

Dt4 min�a; b�; �45�

with

a �
2n

�u2
� w2

�

; b � Re
Dx2

4
�

Dx2

4n
: �46�

Two cases may be considered:b4a anda4b. In the caseb4a the cell Reynolds numbersRe*
of the flow is found to be

Re* �

Dx
p

�Max�u2
� w2

��

n
5

p

8:

From (44) we may deduce that the numerical error is at least two-thirds of the viscous CPPE term:

1
6
Dx2

Dt
5

2
3

1
Re

: �47�

In the casea4b the cell Reynolds number isRe*4
p

8 and (47) still holds.
In both cases the numerical error is far from being negligible with respect to the viscous CPPE

term, so that the supplementary work involved in the CPPE approach may not be fully justified except
perhaps for very-low-Reynolds-number flows.

6. VALIDATION OF METHOD

6.1. Backward-facing step (BFS) flow configuration

In order to validate the method, the flow over a two-dimensional backward-facing step has been
studied. This configuration, for which several experimental and numerical results are available,
involves recirculating flow regions and vortex-shedding phenomena. These two generic features,
encountered in most flows of practical engineering interest, make the backward-facing step both a
relevant and severe test case for numerical methods.

Figure 4 displays the flow geometry and boundary conditions, which correspond to those defined in
the Second Minisymposium on Open Boundary Conditions.22 The expansion ratioH=h � 2 and the
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channel length=height ratioL=H � 20. A parabolic inlet velocity profile, no-slip conditions on solid
walls and the outflow boundary conditions (25), (26) and (32) are used. The Reynolds number is
based on the mean inlet velocity andH. The computations are performed on an (8016 41)-point
regular mesh grid with a time stepDt � 5 � 10ÿ4

�su � 0�02� up to 400 time units.
The procedure described in Section 2.3 is used to initialize the computation. The initial vorticity

field displays vortex sheets near the channel boundaries as shown in Figure 5.

6.2. Preliminary tests

Before performing the computations, several preliminary tests were done in order to illustrate some
properties of the scheme. The cell Reynolds number criterion is illustrated in Figure 6, where the
pressure distributions are displayed att � 10. At this time the computation performed withsu � 0�02
and Reu � 10 is stable. Increasing the Reynolds number toReu � 30 leads to a spurious result at
t � 10.

Figure 4. Flow geometry and velocity boundary conditions. ‘Dirichlet boundaryGD1
: u�z� � 24z�0�5H ÿ z�; w � 0. ‘Dirichlet’

boundaryGD2
: u � w � 0. ‘Dirichlet’ boundary GD3

: u � w � 0. ‘Dirichlet’ boundary GD4
:u�w�0. ‘Neumann’ boundary

GN : ÿp � n@u=@x � 0; @w=@x � 0

Figure 5. Initial vorticity field (iso-contours)
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Figure 6. Preliminary tests: cell Reynolds number criterion. Pressure distribution at inlet plane att � 10 (Z-co-ordinate versus
P): ————, su � 0�02; Reu � 10; - - - -, su � 0�02; Reu � 30

Figure 7. Influence of spatial discretization method. Vertical velocity component distribution at inlet plane (Z-co-ordinate
versusw): e, standard scheme,Reu � 10; �, hybrid scheme,Reu � 10
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Figure 7 displays the vertical velocity component distributions at the inlet plane obtained at
Reu � 10 with a standard FDM discretization and with the present hybrid scheme. Using the present
scheme greatly reduces the spatial oscillations induced by the boundary condition discontinuity at the
inlet plane.

6.3. Results and comparisons

Computations have been performed for the laminar regime1004Re4 800. Results obtained for
the steady as well as the transient regimes are compared with available experimental and numerical
results.

6.3.1. Reattachment length in laminar regime.The Reynolds number dependence of the
reattachment lengthXr=H is reported in Figure 8. Good agreement is found with the experimental
results of Armalyet al.23 for Reynolds numbers up to 400. For higher Reynolds numbers the flow
observed in the experiments is three-dimensional, which may explain the discrepancies observed with
the 2D calculation.

6.3.2. Transient flow.At Re � 800 the transient flow behind the BFS is composed of successive
eddies generated along the lower and upper walls as shown on Figure 9 for the pressure and vorticity
fields obtained at timest � 10, 20 and 60. Only the two main eddies corresponding to the separation
region just behind the step and the additional recirculating zone located on the upper wall remain
after timet � 60. Far downstream the flow relaxes to the parabolic Poiseuille regime.

Figure 8. Reattachment length in laminar regime�1004Re4 800)
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Time history plots of the streamwise and normal velocity components at six different positions in
the flow field are shown in Figures 10 and 11. Two stations�x=H � 6 and 12) are given in the
streamwise direction and three stations�z=H � ÿ0�4; 0�0 and 0�3) in the normal directions.

The results show that, in agreement with the results of Greshoet al., the flow evolves towards a
steady state. This is confirmed by the kinetic energy time history plot in Figure 12, for which the
relative change over the last 100 time units is less than 0�0001. Both transient and steady states are
qualitatively in good agreement with the time history plots of the streamwise velocity component
given by Greshoet al.11 The same number and values of relative maxima are found, corresponding to
the formation and collapse of near-wall eddies.

Figure 9. Transient flow fields. (a)t � 10; (i) pressure; (ii) vorticity. (b)t � 20: (i) pressure; (ii) vorticity. (c)t � 60:
(i) pressure; (ii) vorticity
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Figure 10. Velocity time history plots�x=H � 6�. (a) u-component versus time:. . . ., z=H � ÿ0�4; - - - -, z=H � 0;
————, z=H � 0�3. (b) w-component versus time: . . . .,z=H � ÿ0�4; - - - -, z=H � 0; ————, z=H � 0�3
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Figure 11. Velocity time history plots�x=H � 12�. (a) u-component versus time: . . . .,z=H � ÿ0�4; - - - -, z=H � 0;
————, z=H � 0�3. (b) w-component versus time: . . . .,z=H � ÿ0�4; - - - -, z=H � 0; ————, z=H � 0�3
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6.3.3. Steady state regime.With the present time-dependent method the steady state is reached at
aboutt � 200. The present results are illustrated in Figure 13 by pressure and vorticity distribution
plots at timet � 400. Figure 14 displays the streamwise and normal velocity profiles across the
channel at locationsx=H � 7 and 15. As may be observed, the results are indistinguishable from
those of Gartling obtained with a steady approach.12 In fact, a very small difference exists for thew-
component: the present results atx=H � 6�925 coincide with Gartling’s results atx=H � 7 (Figure
14(b)). Figure 15 shows the pressure and shear stress profiles along the lower and upper channel
walls, which are also in good agreement with Gartling’s results.

6.4. Influence of outflow boundary condition

The influence of the outflow boundary condition was studied by investigating, again atRe � 800,
the effect of the truncation of the computational domain for two different values of the channel length
L=H . The results of two computations corresponding toL=H � 20 and 7 are compared in Figure 16 at

Figure 12. Total kinetic energy time history plot. Total kinetic energy versus timet4 200

Figure 13. Steady state flow field att � 400 (L � 20). (i) Pressure iso-contours. (ii) Vorticity iso-contours
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Figure 14. Steady state flow field att � 400. (a) u-velocity component distribution (Z-co-ordinate versusu). Gartling:e,
x=H � 7; �; x=H � 15. Present method: ————,x=H � 7; - - - -, x=H � 15. (b) w-velocity component distribution (Z-co-

ordiante versusw). Gartling:e, x=H � 7, �; x=H � 15. Present method: ————,x=H � 6�925; - - - -, x=H � 15
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Figure 15. Steady state flow field att � 400. Present method: ————, upper wall; - - - -, lower wall. (a) Wall pressure
distribution (pressure versusX-co-ordinate). (b) Wall shear stress distribution (shear stress versusX-co-ordinate)
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time t � 20. The two vorticity distributions are quasi-identical over a large part of the computational
domain �04 x=H 4 6�, while small pressure differences may be observed. The same conclusions
may be reached at timet � 400 (Figure 17). The wall pressure and wall shear stress are also very
influenced over04 x=H 4 6 by the outflow boundary condition (Figure 18).

Time history plots of the streamwise and normal velocity components atx=H � 6 are reported in
Figure 19. In general, errors less than 10 per cent are encountered in these quantities at timet � 400
due to the outflow boundary condition. Nevertheless, the mean features of the separated flow as well
as the steadiness of the solution have been preserved by the computation.

7. 3D RIBBED CHANNEL FLOW

The feasibility of the method for 3D computations is illustrated here by computating the flow at
Reynolds numberRe � 50 through a three-dimensional channel of square cross-section containing
two ribs on the lower wall. Note that the low Reynolds number of the computation does not in any
case alter the meaning of the demonstration: higher-Reynolds-number flows may be computed with
more grid points on more powerful machines if thesu=Reu stability criterion is fulfilled.

Figure 16. Influnence of outflow boundary condition att � 20. (a) Outflow boundary atL � 20: (i) pressure iso-contours; (ii)
vorticity iso-contours. (b) Outflow boundary atL � 7: (i) pressure iso-contours; (ii) vorticity iso-contours
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The computational domain, sketched in Figure 20, is defined as

O � �a; b� � �c; d� � �e; f �;

with

@O � Gi [ Go [ Gw:

Gi is the input boundary with an imposed Dirichlet boundary condition for the velocity (the velocity
profile is given on this boundary),G0 is the output boundary with a Neumann boundary condition for
the velocity andGw are the wall boundaries, where the no-slip condition is imposed.

7.1. Visualization of flow

The results presented here have been obtained at Reynolds numberRe � 50 based on the maximal
input velocity and the height of the ribs, with a Cartesian regular (1316416 41)-node mesh grid.

Figure 17. Influence of outflow boundary condition att � 400. (a) Outflow boundary atL � 20: (i) pressure iso-contours;
(ii) vorticity iso-contours. (b) Outflow boundary atL � 7: (i) pressure iso-contours; (ii) vorticity iso-contours

NAVIER–STOKES SOLVER FOR INCOMPRESSIBLE FLOW SIMULATION 855

# 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METHODS FLUIDS, VOL.24: 833–861 (1997)



Figure 18. Influence of outflow boundary condition. Outflow boundary atL � 20: ————, lower wall; - - - -, upper wall.
Outflow boundary atL � 7: - - - -, lower wall; . . . ., upper wall. (a) Wall pressure distribution (pressure versusX-co-

ordinate). (b) Wall shear stress distribution (shear stress versusX-co-ordinate)
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Figure 19. Influence of outflow boundary condition. Outflow boundary atL � 20: ————, z=H � 0�3. Outflow boundary at
L � 7: - - - -, z=H � 0�3. (a) u-velocity component atx=H � 6 versus time�t4 450�. (b) w-velocity component atx=H � 6

versus time�t4 450�
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Plate 1 shows a 3D view of the flow visualized by instantaneous streamlines at the non-
dimensionalized timet � 20. The computation, performed with a time stepDt � 10ÿ2, required
about 1�5 h on a CRAY YMP. One can see the highly three-dimensional character of the flow in the
near-wall region between the ribs. Because of the lateral walls, the streamlines near the lower wall
and lateral walls deviate towards the centre of the channel into the recirculating zone before going
over the second rib.

Plate 2 shows two other points of view of the same flow.

7.2. Pressure distribution

Plate 3 displays the iso-pressure distributions in the symmetry planey � �c � d�=2 of the channel
as well as in the median planez � �e � f �=2 at timet � 20. The computation has been carried out in
a way satisfying the stability criteria obtained in Section 5.3. Hence the pressure field displays no
spurious oscillations.

8. CONCLUSIONS

A new spatial scheme based on Q1 isoparametric finite elements has been proposed to discretize the
divergence operators involved in the projection method used to solve the Navier–Stokes equations for
incompressible fluids.

This scheme, which forms the kernel of the PEGASE Navier–Stokes solver developed at ONERA
for the discrete simulation of viscous flows, has interesting smoothing and stability properties.
Associated with finite-difference-type treatments of boundary conditions, it has been used with
success for stimulating 2D and 3D separated flows.

Detailed validation tests conducted for the backward-facing step problem have shown the
efficiency of the present method for long-term unsteady computations.

Current studies are aimed at applying the present hybrid finite element methodology to curvilinear
body-fitted mesh grids.

Figure 20. Ribbed square cross-section channel flow geometry and boundary conditions
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APPENDIX: STABILITY STUDY

Fourier analysis of the scheme provides conditions for no error growth (when all error modes are
damped), which are conditions for practical stability in the unsteady problem. Forgetting as usual the
boundary conditions and the specific instabilities arising from the non-linear convection term, we
consider the linear two-dimensional scalar advection–diffusion problem

@F

@t
�

~V �

~HF � nH
2
F; �48�

where the components�u; w� of ~V andn are assumed to be non-negative.
Using a uniform mesh spacingDx andDz and a time stepDt, we discretize the advection terms

with the hybrid scheme (19) and the Laplacian operator with the second-order centred scheme (22).
Performing the time integration with the explicit forward Euler scheme, we obtain the following
discrete form of equation at location�iDx; kDz� for time t � �n � 1�Dt:

F
n�1
i;k � F

n
i;k � Dt ÿ

u

12Dx
�4�Fn

i�1;k ÿ F
n
iÿ1;k� � �F

n
i�1;k�1 ÿ F

n
iÿ1;k�1� � �F

n
i�1;kÿ1 ÿ F

n
iÿ1;kÿ1��

�

ÿ

w

12Dz
�4�Fn

i;k�1 ÿ F
n
i;kÿ1� � �F

n
i�1;k�1 ÿ F

n
i�1;kÿ1� � �F

n
iÿ1;k�1 ÿ F

n
iÿ1;kÿ1��

�

n

Dx2
�ÿ2Fn

i;k � F
n
i�1;k � Fiÿ1;k� �

n

Dz2
�ÿ2Fn

i;k � F
n
i;k�1 � F

n
i;kÿ1��: �49�

Using modal decomposition,

F
n
i;k � An

i;keji2p=N ejk2p=N
; 04 i; k 4N ; j �

p

�ÿ1�;

whereAn
i;k is the amplitude of the harmonic�i; k� at time stepn. Equation (49) leads to the following

relation for the amplitudeAn�1
i;k :

An�1
i;k �An

i;k 1 ÿ 2
nDt

Dx2
�1 ÿ cosfi� ÿ 2

nDt

Dz2
�1 ÿ cosfk�

� ��

ÿ j
Dt

3Dx
u sinfi�2 � cosfk� �

Dt

3Dz
w sinfk�2 � cosfi�

� ��
; �50�

where the phase anglesfi andfk are respectively equal toi2p=N andk2p=N and belong to the range
�0; 2p�.

The corresponding amplification factorG�i; k�, defined as

G�i; k� �
An�1

i;k

An
i;k

;

is in this case

G�i; k� � 1 ÿ 2
su

Reu
�1 ÿ cosfi� ÿ 2

sw

Rew
�1 ÿ cosfk�

ÿ j
su

3
sinfi�2 � cosfk� �

sw

3
sinfk�2 � cosfi�

� �
; �51�
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where

Reu �
uDx

n
; Rew �

wDz

n
�52�

are respectively theu- andw-based cell Reynolds numbers and

su �
uDt

Dx
; sw �

wDt

Dz
�53�

are the CFL numbers based on the two components of the convecting velocity.
From (51) we write

jGj2 � 1 ÿ 2
su

Reu
�1 ÿ cosfi� ÿ 2

sw

Rew
�1 ÿ cosfk�

� �2

�

su

3
sinfi�2 � cosfk� �

sw

3
sinfk�2 � cosfi�

� �2
: �54�

Using the equality

1
3 �2 � cosfi� �

1
3 �3 ÿ �1 ÿ cosfk�� � 1 ÿ 2

3 sin2
�fk=2�

leads to

jGj2 � 1 ÿ 2
su

Reu
�2 ÿ cosfi� ÿ 2

sw

Rew
�2 ÿ cosfk�

� �2

� su sinfi 1 ÿ
2
3

sin2 fk

2

�
� sw sinfk 1 ÿ

2
3

sin2 fi

2

� ��2

:

 "
�55�

Note that we have8fi; 8fk

su 1 ÿ
2
3

sin2 fk

2

� �
4su; sw 1 ÿ

2
3

sin2 fi

2

� �
4sw

and the theorem established by Hindmarshet al.21 can be used, leading to the criterion

Dt4Min�a;b�; �56�

with

a �
2n

u2
� w2

; b �
1

2n�1=Dx2
� 1=Dz2

�:

�57�
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